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Série	8b		
	

Problème	8b.1	–	microscope	à	force	atomique	(AFM)	
Le	 principe	 du	 microscope	 à	 force	 atomique	 (AFM)	 est	 de	 mesurer	 la	 topologie	 d’une	 surface	 en	
enregistrant	la	déflexion	d’une	poutre	micrométrique	qu’on	déplace	sur	la	surface.	Pour	cela,	on	utilise	
une	poutre	micro-usinée	avec	une	pointe	pyramidale	(le	triangle	sur	le	dessin	8a.1.1.)	indéformable	dont	
l’extrémité	très	fine	(rayon	de	de	courbure	de	quelques	nanomètres)	touche	la	surface	à	scanner.		

Pour	ce	problème,	on	s’intéresse	à	deux	cas	de	figure	:	 

1.	On	appuie	la	pointe	sur	la	surface	plate,	zone	A.	 

2.	On	appuie	la	pointe	sur	la	surface	inclinée,	zone	B.	 

Le	contact	avec	les	surfaces	A et	B se	fait	sans	aucun	frottement.	L’extrémité	de	la	pointe	peut	donc	
glisser	librement.	La	poutre	est	de	masse	négligeable,	de	dimensions	a=500 μm,	b=80 μm,	épaisseur=10 
μm	(selon	ey ),		largeur	l =	14 μm (selon	ez ),	et	de	module	de	Young	E =	150 GPa.	 

	

	

Figure 8b.1.1 | Pointe AFM pour scanner une surface. 

	
Pour	le	premier	cas	(zone	A),	on	approche	la	table	en	−𝑒!	jusqu’à	ce	que	la	déflexion	verticale	(selon	𝑒!)	
de	l’extrémité	de	la	poutre	soit	de	δ	=	30	μm	à	une	distance	a	de	l’encastrement.	

(a)	A	quelle	distance	de	l’encastrement	le	moment	de	flexion	interne	de	la	poutre	est-il	maximal?	
Calculez	ce	moment.	

(b)	En	pratique,	la	force	totale	exercée	par	la	surface	sur	la	pointe	AFM	est	inconnue	(voir	figure	
8a.1.2).	 Elle	 est	 donc	 estimée	 en	 utilisant	 la	 formule	 :	 	𝐹 = 𝑘"##𝛿.	 Déterminer	 la	 constante	
ressort	𝑘"##	de	la	poutre.	
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Figure 8b.1.2 | Forces exercées sur une pointe AFM : sont compliquées (forces d’adhésion, capillaires, van 
der Waals, etc.) 

	

Pour	le	deuxième	cas	(zone	B),	la	force	de	réaction	de	la	surface	B	sur	le	bout	de	la	pointe	a	une	norme	
de	1	mN.		

(c)	Calculer	les	réactions	sur	la	poutre	au	niveau	de	l’encastrement.	

(d)	Calculer	l’angle	𝜃(𝑎)	que	fait	la	poutre	par	rapport	à	l’horizontale	(𝑒$)	à	une	distance	a	de	
l’encastrement.	
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Problème	8b.2	–	Calcul	de	la	déflection	d’une	structure	
Considérez	le	système	présenté	à	la	figure	3a.	La	structure	de	masse	négligeable	est	composée	de	

deux	poutres	(qui	ont	le	même	E	et	même	I)	formant	un	angle	droit	en	C	à	tout	instant.		
La	poutre	de	 segment	AC	est	encastrée	en	A	et	on	considère	qu’elle	ne	peut	 fléchir	que	selon	x	

(horizontalement).	Pour	la	poutre	CD,	on	considère	qu’elle	ne	peut	fléchir	que	selon	y	(verticalement).	
Deux	forces	F	sont	appliquées	aux	points	B	et	D.	Une	force	distribuée	de	densité	F/L	est	appliquée	sur	
le	segment	CD.	

	

Figure 8b.2.1 | (a) Structure composée de deux poutres formant un angle droit entre elles. 
(b) Schéma de la déflexion du point D. 

 
A	l’aide	de	la	figure	8b.2.1,	donnez	l’expression	de	la	déflexion	totale	𝛿%&% 		du	point	D.	Référez-vous	à	
la	figure	pour	bien	comprendre	la	déflexion	demandée	(nous	allons	négliger	le	mouvement	parasite	du	
point	C	selon	l’axe	y).	𝛿%&% 		du	point	D	est	due	à	a)	l’angle	𝜃'(de	la	poutre	CD	en	C,	et	le	fléchissement	
𝛿()de	la	poutre	CD.	

	
Indices	:		

i) petits	angles	:	sin(𝜃) = 	𝜃	
ii) 2	poutres	:	AC	et	CD	
iii) la	poutre	CD	est	comme	encastré	dans	la	poutre	AC	
iv)				Calculez	l’angle	𝜃'( 	de	la	poutre	AC	en	C,	ce	qui	vous	permet	de	trouver	le	mouvement	de	D	

selon	y	dû	au	fléchissement	de	la	poutre	AC.	
iv) puis	déflexion	𝛿()	selon	y	de	poutre	CD	
v) Exprimez	votre	résultat	𝛿%&% 	en	fonction	de	F,	L	(et	de	E	et	de	I).	
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Problème	8b.3	–	Guidage	flexible	
	
La	figure	8b.3.1	montre	un	guidage	flexible.	La	lame	et	la	tige	ont	une	longueur	L.	Une	force	F	est	

appliquée.	Dans	chaque	cas	 (soit	 force	 selon	y,	 soit	 force	 selon	z),	déterminez	 la	 constante	de	
rigidité	du	système	complet.	

On	considère	la	tige	bleue	et	la	lame	grise	comme	des	poutres	faites	d’un	même	matériau	de	module	
de	Young	E.	La	tige	a	un	moment	d’inertie	𝐼* = 𝐼! .	La	lame	a	une	section	de	surface	A,	et	un	moment	
d’inertie	𝐼$,,-." .	

Le	bloc	vert	est	indéformable.	Lame	et	poutre	sont	encastrés	dans	le	bloc	vert.	Le	bloc	ne	tourne	pas	
(pas	de	rotation,	pure	translation	du	bloc	vert	en	y	ou	en	z)	

																										 	

Figure 8b.3.1 | Guidage flexible. La force est appliquée a) selon 𝑒!, b) selon 𝑒* 

	
Indices	:		

o Comme	le	bloc	vert	ne	se	déforme	pas,	nous	devons	avoir	la	même	déflection	à	l’extrémité	de	la	
tige	et	à	l’extrémité	de	la	lame.	

o Comme	il	n’y	a	pas	de	rotation	du	bloc,	on	connait	l’angle	de	l’extrémité	de	de	la	poutre	(0°).	
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Problème	8b.4	–	Energy	Harvester	(intéressant	mais	calcul	long)	
Le	 dispositif	 illustré	 à	 la	 figure	 8b.4.1	 a	 été	 fabriqué	 dans	 le	 labo	 EPFL-LMTS	 en	 2012.	 C'est	 un	
récupérateur	d'énergie	piézoélectrique	sur	lequel	on	a	ajouté	une	masse	pour	augmenter	l'amplitude	de	
déflexion,	diminuer	la	fréquence	de	résonance	et	ainsi	améliorer	ses	performances.	Lors	d'un	processus	
d'optimisation,	 il	 a	 été	 constaté	qu'un	maximum	d'énergie	 est	 récupéré	quand	 la	masse	 recouvre	 la	
moitié	de	la	poutre.	En	ajoutant	cette	masse,	la	puissance	récupérée	a	été	augmentée	par	un	facteur	20,	
et	ce	sans	avoir	changé	les	propriétés	et	dimensions	du	matériau	piézoélectrique.	

	

Figure 8b.4.1 | Récupérateur d’énergie (N. Besse et al., PowerMEMS 2012) 

Dans	cet	exercice,	on	va	chercher	à	évaluer	l'influence	de	la	masse	ajoutée	sur	la	déflexion	statique	de	la	
poutre	dû	à	son	propre	poids.	Le	récupérateur	d'énergie	est	composé	de	plusieurs	couches	de	matériaux	
différents	et	n'est	pas	symétrique	par	rapport	au	plan	neutre	(voir	figure	8b.4.2a).	

Mais	pour	simplifier	les	calculs,	on	considère	un	dispositif	parfaitement	symétrique	par	rapport	au	plan	
neutre	(voir	figure	8b.4.2b)	composé	de	deux	blocs	uniformes	juxtaposés.	Le	bloc	1	a	une	longueur	𝑙/,	
une	épaisseur	ℎ/	une	largeur	b,	une	densité	𝜌/et	un	module	de	Young	𝐸/.	Le	bloc	2	a	une	longueur	𝑙0,	
une	épaisseur	ℎ0,	une	largeur	b,	une	densité	𝜌0	et	un	module	de	Young	𝐸0.		

	

Figure	8b.4.2	|	Schémas	du	récupérateur	d’énergie	:	a)	Dispositif	réel	(b)	Dispositif	équivalent,	plus	
simple	à	évaluer	
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Pour	la	partie	de	gauche,	on	vous	donne	:	

					𝑀/(𝑥) = − 	2!
0
(𝑙/

0 − 2𝑙/𝑥 + 𝑥0) −
	2"
0
(𝑙0 − 𝑙/

0 − 2𝑙𝑥 + 2𝑙/𝑥)	 	 										0 < 𝑥 < 𝑙/																				(54)	

Pour	la	partie	de	droite,	on	vous	donne	:	

	 𝑀0(𝑥) = − 	2"
0
(𝑙0 − 2𝑙𝑥 + 𝑥0)																																	𝑙/ < 𝑥 < 𝑙	 																																											(55)	

1. Donnez	 les	 4	 conditions	 limites	 nécessaires	 afin	 de	 déterminer	 la	 déflexion	 du	 système	 et	
notamment	les	équations	de	continuité	au	point	B.	

2. Trouvez	la	fonction	𝑤(𝑥)	de	déflexion	du	système.	Les	constantes	d'intégrations	sont	pénibles.	
Vous	pouvez	utiliser	votre	outil	préféré	pour	trouver	des	solutions	analytiques.	

3. Tracez	la	déflexion	du	système	en	fonction	du	ratio	𝜆 = 𝑙2/𝑙 = 1 − 𝑙1/𝑙.	
	
(Indice	:	Commencez	par	calculer	le	moment	d'inertie	pour	une	section	rectangulaire	𝐼/,0et	la	force	de	
pesanteur	uniformément	distribuée	𝑞/,0de	chaque	bloc	en	fonction	de	b,	ℎ/,0	et	𝜌/,0).	
	
Pour	l'application	numérique,	utilisez	𝐸/ = 10	𝐺𝑃𝑎,	𝐸/ = 156.25	𝐺𝑃𝑎,	ℎ/ = 200	µ𝑚,		ℎ0 = 800	µ𝑚,	
𝜌/ = 3000𝑘𝑔	𝑚56,	𝜌0 = 15000𝑘𝑔	𝑚56,	𝑙 = 𝑙/ + 𝑙0 = 20𝑚𝑚,	𝑏 = 2𝑚𝑚.	


